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Summary

This report studies the effects of fractional dynamics in

chaotic systems. In particular, Chua's system is modified to

include fractional order elements. Varying the total system

order incrementally from 2.6 to 3.7 demonstrates that systems
of "order" less than three can exhibit chaos as well as other

nonlinear behavior. This effectively forces a clarification of the

definition of order which can no longer be considered only by

the total number of differentiations or by the highest power of

the Laplace variable.

Introduction

It is well known that chaos cannot occur in continuous-time

systems of order less than three. This assertion is based on the

usual concepts of order, such as the number of states in a

system, the highest power of the Laplace variable, s, in the

system, or the total number of separate differentiations or

integrations in a system. Unfortunately, these concepts of order

do not directly relate to systems having fractional order com-

ponents. The purpose of this report is to demonstrate that
systems of order less than three, as defined in the usual way, can

still display chaotic behavior. The next section provides a brief

review of fractional calculus. Useful approximations for these

fractional operators follow. Finally, an example is given which

demonstrates that systems of order less than three can display

chaos. This is both shown experimentally via simulations and

predicted analytically using the describing function method.

Review of Fractional Operators

The idea of fractional integrals and derivatives has been

known since the development of the regular calculus, with the

first reference probably being associated with Leibniz in 1695

(Oldham and Spanier, 1974, page 3). Although not well known

to most engineers, the fractional calculus has been considered

by prominent mathematicians (Courant and Hilbert, 1953) as
well as the "engineers" of the operational calculus (Heaviside,

1971; and Bush, 1929). In fact several textbooks written before

1960 have some small section on fractional calculus (Goldman,

1949; Holbrook, 1966; Starkey, 1954; Carslaw and Jeager,

1948; Scott, 1955; and Mikusinski, 1959). An outstanding

historical survey can be found in Oldham and Spanier (1974)

who also give what is unquestionably the most readable and

complete mathematical presentation of the fractional calculus.

Other bound discussions of the area are given by Ross (1975),

McBride (1979), and McBride and Roach (1985). Unfortu-

nately, many of the results in the fractional calculus are given

in the language of advanced analysis and are not readily

accessible to the general engineering community.

Many systems are known to display fractional order dynam-
ics. Probably the first physical system to be widely recognized

as one demonstrating fractional behavior is the semi-infinite

lossy (RC) line. The current into the line is equal to the half-
derivative of the applied voltage; that is, the impedence is

V(s)=Tsl(S)

Although this system was studied by many, Heaviside (1971 )

considered it extensively using the operational calculus. He

states "there is a universe of mathematics lying in between the

complete differentiations and integrations" and that "fractional

(operators) push themselves forward sometimes, and are just as

real as the others." Another equivalent system is the diffusion

of heat into a semi-infinite solid. Here the temperature looking

in from the boundary is equal to the half integral of the heat rate

there. Other systems'that are known to display fractional order



dynamicsareviscoelasticsystems(BagleyandCalico, 1991;
Koeller, 1984; Koeller, 1986; Skaar, Michel, and Miller, 1988;

Lopez-Marcos, 1990); colored noise (Mandelbrot, 1967); elec-

trode-electrolyte polarization (Ichise, Nagayanagi, and Kojima,
1971; Sun, Onaral, and Tsao, 1984); dielectric polarization

(Sun, Abdelwahab, and Onaral, 1984); boundary layer effects

in ducts (Sugimoto, 1991); and electromagnetic waves

(Heaviside, 1971). Because many of these systems depend

upon specific material and chemical properties, it is expected

that a wide range of fractional order behaviors are possible

using different materials.

Two commonly used definitions for the general fractional

differintegral are the Grunwald definition and the Riemann-

Liouville definition (Oldham and Spanier, 1974). The Ri-

emann-Liouville definition of the fractional integral is given
here as

dq f 1 -q) So f ('c) dz, q < 0dt q = I'(" (t - ,_)q+l

where q can have noninteger values, and thus the name frac-

tional differintegral. Notice that the definition is based on

integration and more importantly is a convolution integral for

q < 0. When q > 0, then the usual integer nth derivative must be

taken of the fractional (q - n)th integral, and yields the frac-

tional derivative of order q as

dqf_d n I dq-nfl

dtq dtn L dtq-n ]' q > 0 and n an integer > q

This appears so vastly different from the usual intuitive defini-

tion of derivative and integral that the reader must abandon the

familiar concepts of slope and area and attempt to get some new

insight (which still remains elusive). This is discussed further

in Lorenzo, C.F.; and Hartley, T.T.: On Conceptualization,

Initialization, and Applications in Fractional Calculus (to be

published).

Fortunately, the basic engineering tool for analyzing linear

systems, the Laplace transform, is still applicable and works as

one would expect; that is,

t_ dqf(')l= sqt{f(l)} -_'_I kVdq-l-k f(t)1

I dtq J k_=0s L _ it-0 ' f°rallq

where n is an integer such that n - 1 < q < n (Oldham and

Spanier, 1974). If the initial conditions are considered to be

zero, this formula reduces to the more expected and comforting
form

Ld:J

Amazingly enough, one of the most difficult obstacles in the

practical application of the fractional calculus is the initial

condition problem. As long as a given system is at rest, at the

zero equilibrium, at time zero, the fractional initial value

problem is readily solved using standard Laplace transform
methods (all initial condition terms are zero). Unfortunately,

the fractional derivative operator starts rather abruptly at time

zero, so that any nonzero initial value for a function will appear

as a discontinuity and translate directly into a t-r term, which

has an annoying singularity at time zero using the appropriate

power, r. This is not necessarily a problem, unless the desired

initial value is not infinity. Bagley (1988) addresses this prob-

lem by creating a modified fractional derivative operator that

essentially subtracts out the singularity. The problem is further

studied by Hartley, T.T.; and Lorenzo, C.F.: Insights Into the

Fractional Initiative Value Problems (to be published) by
relating it back to the semi-infinite line problem.

Bagley (1988) has also extended the initial value problem to

fractional state space systems. Here the idea of state no longer

gives all past and future knowledge of the system behavior via

some stored pseudo-energy. In fact, the number of these frac-

tional states is somewhat arbitrary and dependent only upon
what the user has chosen as the base fractional derivative.

Understanding the possible dynamic behavior of linear frac-

tional order systems is fundamental to the development of

future applications. Progress in this area has been fairly slow,

however, since there was no known general fractional order

impulse response with which to perform convolution.

Recently, Bagley (1988) has shown that the impulse responses
of fractional order systems are related to the Mittag-Leffler

function (Erdelyi, et al. 1955), which is effectively the frac-

tional order analog of the exponential function. With this
knowledge, it has been possible to better clarify the time

responses associated with fractional order systems. Impulse

responses, step responses, and initial condition responses for

some general fractional order systems can be found in Hartley,
T.T.; and Lorenzo, C.F.: The Solution to a General Linear

Fractional Order Initial Value Problem (to be published).

The Concept of System Order

As the concept of "order" is central to the understanding of

fractional systems, some discussion of this concept now fol-

lows. In this discussion, it will be assumed that the systems

being considered are single-input-single-output, that their

representations are minimal in the usual sense (Kailath, 1980),

and that they are linear.



Mathematicalorder is defined as the highest derivative

occurring in a given differential equation. The concept of

mathematical order is applicable to both ordinary and fractional

differential equations. Normally, when the word "order" is

used without a qualifier, it implies the meaning of mathematical
order.

For linear dynamic systems that are described by ordinary

differential equations (i.e., of integer mathematical order), the

system mathematical order implies, or is equivalent to, the

following:

(1) The highest derivative in the ordinary differential

equation

(2) The highest power of the Laplace variable, s, in the

characteristic equation

(3) The number of initializing constants required for the

differential equation

(4) The number of singularities in the characteristic
equation

(5) The length of the state vector

(6) The number of energy storage elements

(7) The number of independent spatial directions in which

a trajectory can move

(8) The number of devices that add 90 ° sinusoidal steady

state phase lag
(9) The number of devices that retain some memory of the

past

The utility of the definition of mathematical order is that it

infers all the system characteristics for systems with only

integer order components.

Thus the benefit of having a definition for order for linear

ordinary differential equations is that it allows a direct under-

standing of the behavior of a given dynamic system. Unfortu-

nately, for fractional differential equations, the order of the

highest derivative does not infer (or is not equal to) all of the

previously mentioned properties. Indeed, the most important

characteristic of order in integer order ordinary differential

equations is probably item (3) in the previous list (i.e., it

dictates the number of initializing constants which together

with the differential equations allow prediction of the future

behavior). In systems terminology, this information provides
the initial "state" of the system being analyzed. Clearly, the

order of the highest derivative in a fractional differential equa-
tion does not have this property, nor does it predict the associ-

ated number of energy/memory elements associated with the

fractional differential equation, nor does it infer the number of

integrations (even fractional) required to solve or simulate the

given fractional differential equation. Thus the issue of order

and the information required together with the fractional differ-

ential equation to predict future behavior is fundamental and is

expected to be treated in detail at a later time.

Approximation of Fractional Operators

The standard definitions of the fractional differintegral do

not allow direct implementation of the operator in time-domain

simulations of complicated systems with fractional elements.

Thus, in order to effectively analyze such systems, it is neces-

sary to develop approximations to the fractional operators

using the standard integer order operators. In the work that
follows, the approximations are effected in the Laplace s-

variable. The resulting approximations provide sufficient accu-

racy for time domain hardware implementations.

Some work has been done in this area already, but it has not
been highly organized. Oldham and Spanier (1974) and Piche

(1992) give several discrete-time approximations based on

numerical quadrature. In continuous time, engineers have used

network theory approximations (Carlson and Halijak, 1964;

Steiglitz, 1964; Carlson and Halijak, 1961; and Halijak, 1964).

More recently Oldham and Spanier (1974), Ichise, Nagayanagi,

and Kojima, 1971; and Charef, et al. (1992) have developed

other network theory approximations. Even more recently, a

discrete-time fractional calculus has been developed similar to

the theory of linear multistep methods for numerical integration

(Lubich, 1985, 1986, 1988a, and 1988b).

The approximation approach taken here is that of Charef, et

al. (1992). Basically the idea is to approximate the system

behavior in the frequency domain. This is done for a given q by

creating an approximation with Bode magnitude response roll

off of 20 times q db/dec, which will consequently have a phase

shift of approximately 90 times q degrees over the required

frequency band. This approximation is created by choosing an

initial breakpoint (the low frequency accuracy limit of the

approximation), the allowable error in db' s, and the number of

s-plane poles in the approximation. The high frequency limit of

the usable bandwidth can be varied by changing the allowable

error and the number of poles. Thus an approximation of any
desired accuracy over any frequency band can be achieved.

Table I gives approximations for 1Is q with q = 0.1 to 0.9 in

steps of 0.1. These were obtained by trial and error and are

reasonably good from 0.01 to 100 rad/sec. These approxima-

tions are used in the study that follows.

A Fractional Chua System

Chua's system is well known and has been extensively

studied. The particular form to be considered here was pre-

sented by Hartley (1989) and used further for the study of

Hartley and Mossayebi (1993). This system is different from

the usual Chua system in that the piecewise-linear nonlinearity

is replaced by an appropriate cubic nonlinearity which yields

very similar behavior. It is represented in state space form as



y=x-y+z

z_ lOOy_
7

It is studied here in two different system representa-

tions as discussed in the following sections. In all cases studied,

13is defined to be 100/7 and ct is allowed to vary.

State Space Configuration

To study the effect of fractional derivatives on the dynamics

of this system, the state space configuration (fig. l(a)) was

considered first. Here, the vector derivative was replaced by a
vector fractional derivative as follows:

dqx _ x - 2x 3

--=aLy+---dt q

dqy
--=x-y+z
dt q

dqz lOOy _-
dt q 7

Simulations were then performed using q = 0.8, 0.9, 1.0, and

1.1. The approximations from table I were used for the simula-
tions of the appropriate qth integrals. When q < 1, then the

approximations were used directly. It should further be noted

that approximations used in the simulations for l/s q, when

q > 1, are obtained by using lls times the approximation for
1Is q-I from table I.

The results from this state space study verified that chaos

could indeed occur in a system of mathematical order less than

3. This was determined by computing the Lyapunov exponents

for each of the simulations with q = 0.9, 1.0, and 1.1, using the

method of Benettin, et al. (1990). Chaos is indicated when any

of the Lyapunov exponents is greater than zero. These results

are given in table II where the largest Lyapunov exponents are

given as a function of system order. In each case, the second

exponent was near zero. The 2.7 order system approximation

had an additional six negative exponents which were not listed.

Also the 3.3 order system approximation was so large that it

prohibited a timely calculation of any exponents but the first.

Since the order of this system was greater than three, these

calculations were not pursued. In all cases, the one positive

exponent clearly indicated that the system was behaving cha-

otically. The numerical simulations also indicated that the

lower limit of the vector fractional derivative q was between

0.8 and 0.9 for this system to remain capable of generating
chaos. The lowest value obtained for mathematical order to

yield chaos was 2.7 using the q = 0.9 fractional vector deriva-

tive. No upper limit was obtained. Phase plane plots for these

systems are given in figure 2.

Feedback Configuration

The feedback configuration is now considered. To change

the total system mathematical order, the separated lls in figure
l(b) was allowed to change powers, that is,

1 1

$ S q

A variety of simulations were performed on the resulting

systems as discussed subsequently. Here, the approximations

from table I were used to represent the fractional integral where
again the approximations for l/s q, when q > 1, were obtained

by using 1/s times the approximation for 1Is q-1.

Bifurcation diagrams for several of these systems are given
in figure 3. Here, a particular value of q was chosen, and the

parameter was varied to obtain the particular bifurcation plot.

These diagrams were generated by simulation using Euler's

method and a simulation timestep of 0.001. These were veri-

fied by further reducing the timestep by an order of magnitude

with little change in the overall bifurcation structure. To obtain

these diagrams, the values of the output x-variable were plotted

whenever its slope changed sign. Although it is believed that

the bifurcation diagrams are reasonably accurate and are

sufficiently accurate for this particular study, more correct

diagrams could possibly be obtained by using more accurate

approximations of the fractional derivative than those given in
table I or a more accurate simulation. Observation of the

bifurcation diagrams indicates behavior similar to that from

the state space study. For the feedback configuration, decreas-
ing the power ofs shifts the bifurcation diagram to the right as

a function of ct, while the converse is also true. The limits on

the system mathematical order to have a chaotic response as

measured from the bifurcation diagrams are approximately 2.5
< n < 3.8. The overall behavior from the simulation studies is

summarized in figure 4.

An advantage to the feedback configuration is that it allows

easy system analysis using describing functions, as discussed

in Hartley and Mossayebi (1993). Here the idea is that the



frequencyresponseofthelinearblockinthefeedbackconfigu-
rationisplottedintheNyquistplane,togetherwithminusone
overtheappropriatedescribingfunctionofthenonlinearity,as
infigure5.Thefractionalorderintegralintheloopishandled
directlyby takingthefrequencyresponseontheprimary
Riemannsheetandessentiallyposesnocomplicationorconfu-
sioninapplicationofthedescribingfunctionapproach.Inother
words,thefactthatfractionalpowersof s are present does not

require any frequency domain approximation as in the time-

domain simulation; rather the fractional powers ofs can be used

as is in computing the frequency response of the linear block.

In Hartley and Mossayebi (1993), it is shown that the important

points from the nonlinearity of this system in the Nyquist plane
are

(1) q_e[H(jto))] > -3.5, ,9_[H(jo)] = 0, which indicates two

stable points at x = + 0_.5.

(2) q_e[H(jto))] < -3.5, _9_[H(jto)] = 0, which indicates a

Hopf bifurcation of the stable points of item (1) into a limit

cycle.
(3) q_[H(jo))] < -7, _9_,[H(jo)] = 0, which indicates that

period doubling of the limit cycle of item (2) occurs (this

progresses into spiral chaos).

(4) q_¢[Hfjo))l <-14, _[Hqo_)l = 0, which indicates merg-

ing of the spiral chaos into the double scroll behavior.

Extinction of the double scroll (meaning its disappearance) is

not directly predicted using the describing function approach,

but a reasonable approximate value is q_e[H(jto))] < -23,

_[H(jo))] = 0. A diagram indicating the usage of the describing

function is given in figure 5.

Using these results and varying the power of the integrator in

the loop allowed a theoretical prediction of the simulation re-

sults of figure 4. These theoretical results are given in figure 6.

It should be noted that the qualitative features are very well

predicted using the describing function approach, and that the

quantitative results are reasonably close. Furthermore, for
mathematical system order less than approximately 2.85, the

describing function approach predicted the appearance of a
stable and unstable limit cycle as ct increased (via an apparent

saddle node bifurcation). These limit cycles coexist with each

of the stable fixed points. Eventually, as tx increased further, the

unstable cycles merged with the stable fixed points via a

subcritical Hopf bifurcation, leaving unstable fixed points.

This entire process basically became a supercritical Hopf

bifurcation for mathematical order greater than 2.85. This was
then verified in the simulations with this bifurcation structure

occurring for mathematical system order less than approxi-

mately 2.75. In fact, for the mathematical order equal to 2.6, the
simulation showed the points at x = + 0_5.5 to be stable and

each coexisting with spiral chaos. It is a true testament to the

utility of the describing function approach that it could predict

the behavior of this system as accurately as it does.

Concluding Remarks

This report has introduced the idea of fractional derivatives

from the dynamic systems viewpoint. It has been demonstrated

that the usual idea of system order must be modified when

fractional derivatives are present. The usual approach of calcu-

lating the mathematical system order by determining the

highest derivative in the system does not work in this situation.
It has been further demonstrated that chaos, as well as the

other usual nonlinear dynamic phenomena, can occur in sys-
tems with mathematical order less than three via Chua's

system. This is surprising given the usual nonlinear system
paradigms concerning chaos and order. It is not clear at this

point whether the chaos in fractional order systems should be

characterized differently than chaos in regular integer order

systems.
It should be noted that the describing function approach

usually requires at least -180 ° of phase shift in the linear part

of the feedback loop to ever predict Hopf bifurcations, and
consequently chaos, for memoryless nonlinearities. Because

the linear part can be a nonminimum phase transfer function,

it is further conjectured that chaos can occur in systems with

mathematical order less than three and probably less than one.

Furthermore, the feedback configuration indicates that, as long

as the linear part of the loop has at least -180 ° of phase shift,

the possibility of chaos in the system depends primarily on the

nonlinearity and how its particular describing function be-
haves.

As has been demonstrated, the idea of fractional derivatives

requires one to reconsider dynamic system concepts that are

often taken for granted. Some of these concepts have been

discussed in this report. Some others that require much further

consideration are the concept of Lyapunov exponents for
fractional states, the use of fractional states in which to embed

attractors, and the relationship between fractional order and
fractal dimension.

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135, June 30, 1995
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TABLE I.--FRACTIONAL OPERATORS WITH APPROXI-

MATELY 2 db ERROR FROM w = 10 -2 TO 102 rad/sec

1 220.4s a + 5004s 3 + 5038s 2 + 234.5s + 0.4840

0.1 5
s s + ----359.8s4 + 5742s3- + 4247s2-- + 147.7s + 0.2099

1

0.2
S

60.95s a + 816.9s 3 + 582.8s 2 + 23.24s + 0.04934

5
s + 134.0s a + 956.5s 3 + 383.5s 2 + 8.953s + 0.01821

1
--=

0.3
s

23.76s a + 224.9s 3 + 129.12 + 4.733s + 0.01052

5s + 64.51s* + 252.2s 3 + 63.61s 2 + 1.104s + 0.002267

1

0.4
S

25.00s 4 + 558.5s 3 + 664.2s 2 + 44.15s + 0.1562

5
s + 125.6s 4 + 840.6s 3 + 317.2s 2 + 7.428s + 0.02343

1 15.97s a + 593.2s 3 + 1080s 2 + 135.4s + 1
--=

s°'5 s 5 + 134.3s a + 1072s 3 + 543.4s 2 + 20.10s + 0.1259

1
m_

0.6
S

8.579s 4 + 255.6s 3 + 405.3s 2 + 35.93s + 0.1696

5s +94.22s 4 + 472.9s 3 + 134.8s 2 + 2.639s + 0.009882

1

0.7
S

5.406s 4 + 177.6s 3 + 209.6s 2 + 9.197s + 0.01450

5
s + 88.12s 4 + 279.2s 3 + 33.30s 2 + 1.927s + 0.0002276

1

0.8
s

5.235s 3 + 1453s 2 + 5306s + 254.9

4s + 658.1s 3 + 5700s 2 + 658.2s + I

1 1.766s 2 + 38.27s + 4.914

0.9 3s s + 36.15s2 + 7.789s + 0.01000

TABLE II.--LARGEST LYAPUNOV EXPONENTS FOUND IN THE

STATE SPACE CONFIGURATION FOR q = 0.9, 1.0, AND 1.1
WHICH GIVES A TOTAL SYSTEM MATHEMATICAL

ORDER OF 2.7, 3.0, AND 3.3, RESPECTIVELY

Mathematical

system order

2.7

3.0

3.3

Order of system a-used Exponents

approximation

9 12.75 0.338 --0.000201 -0.132

3 9.50 0.248 -4).004.12 -3.07

18 7.00 0.318 (a) (a)

aThese values were not calculated.
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system, (a) State space configuration. (b) Feedback configuration.
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